Emmy, the Algebra System: Differential Geometry Chapter Five
Functional Differential Geometry: Chapter 5
5 Integration
We know how to integrate real-valued functions of a real variable. We want to extend this idea to manifolds, in such a way that the integral is independent of the coordinate system used to compute it.
3-Dimensional Euclidean Space
(define-coordinates (up x y z) R3-rect)
NoteERR
WARNING: R3-rect already refers to: #'emmy.env/R3-rect in namespace: mentat-collective.emmy.fdg-ch05, being replaced by: #'mentat-collective.emmy.fdg-ch05/R3-rect
(define R3-rect-point ((point R3-rect) (up 'x0 'y0 'z0)))(define u (+ (* 'u↑0 d:dx) (* 'u↑1 d:dy)))(define v (+ (* 'v↑0 d:dx) (* 'v↑1 d:dy)))(print-expression
(((wedge dx dy) u v) R3-rect-point))(+ (* u↑0 v↑1) (* -1 u↑1 v↑0))(define-coordinates (up r theta z) R3-cyl)
NoteERR
WARNING: R3-cyl already refers to: #'emmy.env/R3-cyl in namespace: mentat-collective.emmy.fdg-ch05, being replaced by: #'mentat-collective.emmy.fdg-ch05/R3-cyl
(define a (+ (* 'a↑0 d:dr) (* 'a↑1 d:dtheta)))(define b (+ (* 'b↑0 d:dr) (* 'b↑1 d:dtheta)))(print-expression
(((wedge dr dtheta) a b) ((point R3-cyl) (up 'r0 'theta0 'z0))))(+ (* a↑0 b↑1) (* -1 a↑1 b↑0))(define u (+ (* 'u↑0 d:dx) (* 'u↑1 d:dy) (* 'u↑2 d:dz)))(define v (+ (* 'v↑0 d:dx) (* 'v↑1 d:dy) (* 'v↑2 d:dz)))(define w (+ (* 'w↑0 d:dx) (* 'w↑1 d:dy) (* 'w↑2 d:dz)))(print-expression
(((wedge dx dy dz) u v w) R3-rect-point))(+ (* u↑0 v↑1 w↑2) (* -1N u↑0 v↑2 w↑1) (* -1N u↑1 v↑0 w↑2) (* u↑1 v↑2 w↑0) (* u↑2 v↑0 w↑1) (* -1N u↑2 v↑1 w↑0))(print-expression
(- (((wedge dx dy dz) u v w) R3-rect-point)
(determinant
(matrix-by-rows (list 'u↑0 'u↑1 'u↑2)
(list 'v↑0 'v↑1 'v↑2)
(list 'w↑0 'w↑1 'w↑2)))))0Computing Exterior Derivatives
(define a (literal-manifold-function 'alpha R3-rect))(define b (literal-manifold-function 'beta R3-rect))(define c (literal-manifold-function 'gamma R3-rect))(define theta (+ (* a dx) (* b dy) (* c dz)))(define X (literal-vector-field 'X-rect R3-rect))(define Y (literal-vector-field 'Y-rect R3-rect))(print-expression
(((- (d theta)
(+ (wedge (d a) dx)
(wedge (d b) dy)
(wedge (d c) dz))) X Y)
R3-rect-point))0(define omega
(+ (* a (wedge dy dz))
(* b (wedge dz dx)) (* c (wedge dx dy))))(define Z (literal-vector-field 'Z-rect R3-rect))(print-expression
(((- (d omega)
(+ (wedge
(d a) dy dz) (wedge (d b) dz dx)
(wedge (d c) dx dy))) X Y Z)
R3-rect-point))0Properties of Exterior Derivatives
(print-expression
(((d (d theta)) X Y Z) R3-rect-point))05.4 Vector Integral Theorems
(define v (literal-vector-field 'v-rect R2-rect))(define w (literal-vector-field 'w-rect R2-rect))(define alpha (literal-function 'alpha R2->R))(define beta (literal-function 'beta R2->R))(define R2-rect-basis (coordinate-system->basis R2-rect))(print-expression
(let-scheme
((dx (ref (basis->oneform-basis R2-rect-basis) 0))
(dy (ref (basis->oneform-basis R2-rect-basis) 1)))
(((- (d (+ (* (compose alpha (chart R2-rect)) dx)
(* (compose beta (chart R2-rect)) dy)))
(* (compose (- ((partial 0) beta)
((partial 1) alpha))
(chart R2-rect))
(wedge dx dy)))
v w)
R2-rect-point)))0(define a (literal-manifold-function 'a-rect R3-rect))(define b (literal-manifold-function 'b-rect R3-rect))(define c (literal-manifold-function 'c-rect R3-rect))(define flux-through-boundary-element
(+ (* a (wedge dy dz))
(* b (wedge dz dx))
(* c (wedge dx dy))))(define production-in-volume-element
(* (+ (d:dx a) (d:dy b) (d:dz c))
(wedge dx dy dz)))(define X (literal-vector-field 'X-rect R3-rect))(define Y (literal-vector-field 'Y-rect R3-rect))(define Z (literal-vector-field 'Z-rect R3-rect))(print-expression
(((- production-in-volume-element
(d flux-through-boundary-element))
X Y Z)
R3-rect-point))0(repl/scittle-sidebar)